Welcome to our online store
Được tạo bởi Blogger.
Latest Products Get our latest products by subscribing this site
Hiển thị các bài đăng có nhãn Mạng căn bản. Hiển thị tất cả bài đăng
Hiển thị các bài đăng có nhãn Mạng căn bản. Hiển thị tất cả bài đăng

Khái niệm mạng máy tính căn bản nhất

Với sự phát triển của khoa học và kỹ thuật, hiện nay các mạng máy tính đã phát triển một cách nhanh chóng và đa dạng cả về quy mô, hệ điều hành và ứng dụng. Do vậy việc nghiên cứu chúng ngày càng trở nên phức tạp. Tuy nhiên các mạng máy tính cũng có cùng các điểm chung thông qua đó chúng ta có thể đánh giá và phân loại chúng.


I. Định nghĩa mạng máy tính


Mạng máy tính là một tập hợp các máy tính được nối với nhau bởi đường truyền theo một cấu trúc nào đó và thông qua đó các máy tính trao đổi thông tin qua lại cho nhau.


Đường truyền là hệ thống các thiết bị truyền dẫn có dây hay không dây dùng để chuyển các tín hiệu điện tử từ máy tính này đến máy tính khác. Các tín hiệu điện tử đó biểu thị các giá trị dữ liệu dưới dạng các xung nhị phân (on - off). Tất cả các tín hiệu được truyền giữa các máy tính đều thuộc một dạng sóng điện từ. Tùy theo tần số của sóng điện từ có thể dùng các đường truyền vật lý khác nhau để truyền các tín hiệu. Ở đây đường truyền được kết nối có thể là dây cáp đồng trục, cáp xoắn, cáp quang, dây điện thoại, sóng vô tuyến ... Các đường truyền dữ liệu tạo nên cấu trúc của mạng. Hai khái niệm đường truyền và cấu trúc là những đặc trưng cơ bản của mạng máy tính.





Hình 2.1: Một mô hình liên kết các máy tính trong mạng


Với sự trao đổi qua lại giữa máy tính này với máy tính khác đã phân biệt mạng máy tính với các hệ thống thu phát một chiều như truyền hình, phát thông tin từ vệ tinh xuống các trạm thu thụ động... vì tại đây chỉ có thông tin một chiều từ nơi phát đến nơi thu mà không quan tâm đến có bao nhiêu nơi thu, có thu tốt hay không.


Đặc trưng cơ bản của đường truyền vật lý là giải thông. Giải thông của một đường chuyền chính là độ đo phạm vi tần số mà nó có thể đáp ứng được. Tốc độ truyền dữ liệu trên đường truyền còn được gọi là thông lượng của đường truyền - thường được tính bằng số lượng bit được truyền đi trong một giây (Bps). Thông lượng còn được đo bằng đơn vị khác là Baud (lấy từ tên nhà bác học - Emile Baudot). Baud biểu thị số lượng thay đổi tín hiệu trong một giây.


Ở đây Baud và Bps không phải bao giờ cũng đồng nhất. Ví dụ: nếu trên đường dây có 8 mức tín hiệu khác nhau thì mỗi mức tín hiệu tương ứng với 3 bit hay là 1 Baud tương ứng với 3 bit. Chỉ khi có 2 mức tín hiệu trong đó mỗi mức tín hiệu tương ứng với 1 bit thì 1 Baud mới tương ứng với 1 bit.


II. Phân loại mạng máy tính


Do hiện nay mạng máy tính được phát triển khắp nơi với những ứng dụng ngày càng đa dạng cho nên việc phân loại mạng máy tính là một việc rất phức tạp. Người ta có thể chia các mạng máy tính theo khoảng cách địa lý ra làm hai loại: Mạng diện rộng và Mạng cục bộ.


Mạng cục bộ (Local Area Networks - LAN) là mạng được thiết lập để liên kết các máy tính trong một khu vực như trong một toà nhà, một khu nhà.


Mạng diện rộng (Wide Area Networks - WAN) là mạng được thiết lập để liên kết các máy tính của hai hay nhiều khu vực khác nhau như giữa các thành phố hay các tỉnh.


Sự phân biệt trên chỉ có tính chất ước lệ, các phân biệt trên càng trở nên khó xác định với việc phát triển của khoa học và kỹ thuật cũng như các phương tiện truyền dẫn. Tuy nhiên với sự phân biệt trên phương diện địa lý đã đưa tới việc phân biệt trong nhiều đặc tính khác nhau của hai loại mạng trên, việc nghiên cứu các phân biệt đó cho ta hiểu rõ hơn về các loại mạng.


III. Sự phân biệt giữa mạng cục bộ và mạng diện rộng


Mạng cục bộ và mạng diện rộng có thể được phân biệt bởi: địa phương hoạt động, tốc độ đường truyền và tỷ lệ lỗi trên đường truyền, chủ quản của mạng, đường đi của thông tin trên mạng, dạng chuyển giao thông tin.


Địa phương hoạt động: Liên quan đến khu vực địa lý thì mạng cục bộ sẽ là mạng liên kết các máy tính nằm ở trong một khu vực nhỏ. Khu vực có thể bao gồm một tòa nhà hay là một khu nhà... Điều đó hạn chế bởi khoảng cách đường dây cáp được dùng để liên kết các máy tính của mạng cục bộ (Hạn chế đó còn là hạn chế của khả năng kỹ thuật của đường truyền dữ liệu). Ngược lại mạng diện rộng là mạng có khả năng liên kết các máy tính trong một vùng rộng lớn như là một thành phố, một miền, một đất nước, mạng diện rộng được xây dựng để nối hai hoặc nhiều khu vực địa lý riêng biệt.


Tốc độ đường truyền và tỷ lệ lỗi trên đường truyền: Do các đường cáp của mạng cục bộ đươc xây dựng trong một khu vực nhỏ cho nên nó ít bị ảnh hưởng bởi tác động của thiên nhiên (như là sấm chớp, ánh sáng...). Điều đó cho phép mạng cục bộ có thể truyền dữ liệu với tốc độ cao mà chỉ chịu một tỷ lệ lỗi nhỏ. Ngược lại với mạng diện rộng do phải truyền ở những khoảng cách khá xa với những đường truyền dẫn dài có khi lên tới hàng ngàn km. Do vậy mạng diện rộng không thể truyền với tốc độ quá cao vì khi đó tỉ lệ lỗi sẽ trở nên khó chấp nhận được.


Mạng cục bộ thường có tốc độ truyền dữ liệu từ 4 đến 16 Mbps và đạt tới 100 Mbps nếu dùng cáp quang. Còn phần lớn các mạng diện rộng cung cấp đường truyền có tốc độ thấp hơn nhiều như T1 với 1.544 Mbps hay E1 với 2.048 Mbps.


(Ở đây bps (Bit Per Second) là một đơn vị trong truyền thông tương đương với 1 bit được truyền trong một giây, ví dụ như tốc độ đường truyền là 1 Mbps tức là có thể truyền tối đa 1 Megabit trong 1 giây trên đường truyền đó).


Thông thường trong mạng cục bộ tỷ lệ lỗi trong truyền dữ liệu vào khoảng 1/107-108 còn trong mạng diện rộng thì tỷ lệ đó vào khoảng 1/106 - 107


Chủ quản và điều hành của mạng: Do sự phức tạp trong việc xây dựng, quản lý, duy trì các đường truyền dẫn nên khi xây dựng mạng diện rộng người ta thường sử dụng các đường truyền được thuê từ các công ty viễn thông hay các nhà cung cấp dịch vụ truyền số liệu. Tùy theo cấu trúc của mạng những đường truyền đó thuộc cơ quan quản lý khác nhau như các nhà cung cấp đường truyền nội hạt, liên tỉnh, liên quốc gia. Các đường truyền đó phải tuân thủ các quy định của chính phủ các khu vực có đường dây đi qua như: tốc độ, việc mã hóa.


Còn đối với mạng cục bộ thì công việc đơn giản hơn nhiều, khi một cơ quan cài đặt mạng cục bộ thì toàn bộ mạng sẽ thuộc quyền quản lý của cơ quan đó.


Đường đi của thông tin trên mạng: Trong mạng cục bộ thông tin được đi theo con đường xác định bởi cấu trúc của mạng. Khi người ta xác định cấu trúc của mạng thì thông tin sẽ luôn luôn đi theo cấu trúc đã xác định đó. Còn với mạng diện rộng dữ liệu cấu trúc có thể phức tạp hơn nhiều do việc sử dụng các dịch vụ truyền dữ liệu. Trong quá trình hoạt động các điểm nút có thể thay đổi đường đi của các thông tin khi phát hiện ra có trục trặc trên đường truyền hay khi phát hiện có quá nhiều thông tin cần truyền giữa hai điểm nút nào đó. Trên mạng diện rộng thông tin có thể có các con đường đi khác nhau, điều đó cho phép có thể sử dụng tối đa các năng lực của đường truyền hay nâng cao điều kiện an toàn trong truyền dữ liệu.


Dạng chuyển giao thông tin: Phần lớn các mạng diện rộng hiện nay được phát triển cho việc truyền đồng thời trên đường truyền nhiều dạng thông tin khác nhau như: video, tiếng nói, dữ liệu... Trong khi đó các mạng cục bộ chủ yếu phát triển trong việc truyền dữ liệu thông thường. Điều này có thể giải thích do việc truyền các dạng thông tin như video, tiếng nói trong một khu vực nhỏ ít được quan tâm hơn như khi truyền qua những khoảng cách lớn.


Các hệ thống mạng hiện nay ngày càng phức tạp về chất lượng, đa dạng về chủng loại và phát triển rất nhanh về chất. Trong sự phát triển đó số lượng những nhà sản xuất từ phần mềm, phần cứng máy tính, các sản phẩm viễn thông cũng tăng nhanh với nhiều sản phẩm đa dạng. Chính vì vậy vai trò chuẩn hóa cũng mang những ý nghĩa quan trọng. Tại các nước các cơ quan chuẩn quốc gia đã đưa ra các những chuẩn về phần cứng và các quy định về giao tiếp nhằm giúp cho các nhà sản xuất có thể làm ra các sản phẩm có thể kết nối với các sản phẩm do hãng khác sản xuất.

ST


Xem thêm: http://kenhdaihoc.com/forum/showthread.php?t=3874

Tìm hiểu về Hệ thống số nhị phân(bibary)

Hệ thống số ta dùng hằng ngày là Thập Phân (Decimal). Thập là 10, có nghĩa là ta dùng 10 dấu hiệu khác nhau để viết một con số. Khi đếm từ 0 đến 9 ta viết ra liên tục các dấu hiệu 0,1,2,3,4,5,6,7,8,9. Đến đây, nếu tiếp tục đếm tiếp ta sẽ không còn dấu hiệu nào nữa. Do đó ta dùng lại số 0 và bắt đầu hàng chục như 10,11,12,13 ..v.v cho đến 19 rồi tăng hàng chục lên nữa thành 20,21,22, .vv. Hãy xem con số 7354. Con số nầy biểu diển ( 7*1000 + 3*100 + 5*10 + 4 ) đơn vị. Lưu ý hàng đơn vị, hàng chục, hàng trăm và hàng ngàn. Ngàn có nghĩa là 10 lũy thừa 3, trăm có nghĩa là 10 lũy thừa 2, chục có nghĩa là 10 lũy thừa 1 và đơn vị có nghĩa là 10 lũy thừa 0 (nhớ rằng 10 lũy thừa 0 thì bằng 1). Nói một cách khác nếu ta đi dọc theo con số từ phải qua trái thì lũy thừa 10 (còn gọi là base 10 của thập phân) tăng lên từ từ.

Trong hệ thống số Nhị Phân (Binary) ta chỉ dùng có hai dấu hiệu 0 và 1 để viết ra một con số. Nếu ta đếm từ 0 đến 1 thì đã dùng hết các dấu hiệu rồi. Nếu muốn tiếp tục đếm ta phải dùng lại dấu hiệu 0 và bắt đầu hàng hai, tức là con số hai trong hệ thống Nhị Phân được viết là 10. Như thế trong Nhị Phân con số 1111 biểu diển ( 1*8 + 1*4 + 1*2 + 1 ) đơn vị, trong đó ta biết rằng 8 có nghĩa là 2 lũy thừa 3, 4 có nghĩa là 2 lũy thừa 2, 2 có nghĩa là 2 lũy thừa 1 và đơn vị có nghĩa là 2 lũy thừa 0.

Ngược lại, để đổi một số Thập Phân ra Nhị Phân ta tìm cách trừ ra những multiple của 8,4,2, .v.v. Thí dụ bắt đầu từ số 75 Thập Phân, ta trừ 64 (tức là 2 lũy thừa 6) ra sẽ còn lại 11, kế đó trừ 8, rồi trừ 2 như trong bảng dưới đây:


75 - 64 = 11
11 - 8 = 3
3 - 2 = 1
Vậy 75 = 1*64 + 0*32 + 0*16 + 1*8 + 0*4 + 1*2 + 1
Do đó 75 (Thập Phân) = 1 0 0 1 0 1 1 (Nhị Phân)

Cách cộng hai con số Nhị Phân cũng tương tợ như trong hệ thống Thập Phân, tức là ta dùng cách đếm. Trong thực tế ta có thể đổi hai con số Nhị Phân ra Thập Phân, cộng hai con số ấy trong hệ thống Thập Phân rồi đổi kết quả ra Nhị Phân trở lại.
Thí dụ:
Nhị PhânThập Phân
1 1 1 014
+1 1 0 113
27= 1 1 0 1 1

Ghi chú: 27 = 16 + 8 + 2 + 1 = 1*16 + 1*8 + 0*4 + 1*2 + 1

Muốn làm toán trừ thì ta đếm ngược thay vì đếm xuôi.
Một Byte thì có 8 bits. Mỗi Byte có thể có giá trị từ 0 đến 255. Con số 255 Thập Phân thì bằng 11111111 Nhị phân . Vì số Nhị Phân rất dài và khó nhận diện nên người ta thường gom từng nhóm 4 bits thành một số trong hệ thống Thập Lục Phân (Hexadecimal). Đó là vì 2 lũy thừa 4 thì bằng 16. Trong hệ thống Thập Lục Phân ta dùng 16 dấu hiệu khác nhau: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F. Con số Nhị Phân 11111111 thì bằng FF trong Thập Lục Phân. muốn đổi một số Thập Phân ra Nhị Phân ta có thể đổi nó ra Thập Lục Phân trước rồi biến mỗi con số Thập Lục Phân ra 4 bits.

Thí dụ: 237 Thập Phân (237= 14*16 + 13) đổi ra ED Thập Lục Phân, rồi E (nhớ là E = 14 Thập Phân) ra1110 và D (nhớ là D = 13 Thập Phân) ra 1101.

Để phân biệt các bits trong một Byte, ta gọi Least Significant Bit (LSB) là Bit0 và Most Significant Bit (MSB) là Bit7.
Ta nói trong con số Hex FF tất cả các bits đều bằng 1 hay đều set.


Thí dụ:
Số Thập Lục Phân B7=10110111
Bit76543210
Giá trị của bit1286432168421
Bạn nên học thuộc bảng giá trị của các bits trên đây. Ngoài ra hãy nhớ Bit8=256, số lớn nhất của Byte là 255.
Bit10 = 1024 (cở một Kílô).
Một số Nhị phân mà Bit0=0 thì chắc chắn là một số chẳn.
Số Nhị Phân thường được dùng trong các bài toán Luận Lý (Logical), số 1 được dùng biểu diễn giá trị True, số 0 cho False. Các Logical Operation thông dụng là:
ORKhi một trong hai Bit là 1 thì kết quả là 11 0 1 0 OR 0 1 1 0 = 1 1 1 0
ANDChỉ khi cả hai Bit đều là 1 thì kết quả là 11 0 1 0 AND 0 1 1 0 = 0 0 1 0
XOR(Exclusive OR)Khi hai Bit có giá trị đối nhau thì kết quả là 11 0 1 0 XOR 0 1 1 0 = 1 1 0 0

Con số Nhị Phân thứ nhì trong một Logical AND operation còn được gọi là MASK (mặt nạ) , ý nói chỉ bit nào của số Nhị Phân thứ nhì là 1 thì xuyên qua nó ta mới thấy cái bit (nằm cùng một vị trí) của số Nhị Phân thứ nhất . Thí dụ nếu MASK là 11000000 thì ta chỉ có thể thấy được Bit7 và Bit6 của số Nhị Phân thứ nhất, kết quả của Logical AND operation chắc chắn sẽ cho các bits 0 đến 5 đều bằng 0.

Một thí dụ MASKing là đổi một character từ lowercase ra uppercase. Ta biết Ascii value của "a" là Hex 61, còn Ascii value của "A" là Hex 41. Nếu ta apply lên character "a" cái MASK Hex 41, tức là 61 AND 41 = 41 (hay 01100001 AND 01000001 = 01000001 ). , nói một cách khác ta reset hay clear bit5 của "a", thì kết quả sẽ là "A".

Trong TCP/IP network configuration ta apply Subnet Mask lên IP address để nhận diện NetworkID.
Thí dụ: IP Address: 192.16.24.69 , Subnet Mask: 255.255.255.0 (hay FF.FF.FF.0). Do đó NetworkID=192.16.24.0


Trích từ: http://kenhdaihoc.com/forum/showthread.php?t=3871

Mô hình mạng TCP/IP -Tìm hiểu chi tiết


BỘ GIAO THỨC TCP/IP

I Giới Thiệu:
-Để các máy máy tính có thể liên lạc với nhau qua mạng, chúng phải sử dụng cùng 1 ngôn ngữ hay còn gọi là 1 giao thức (Protocol). Giao thức là 1 hệ luật và chuẩn cho phép các máy tính trong mạng liên lạc với nhau.
-TCP/IP là viết tắt của Transmission Control Protocol (Giao thức Điều Khiển Truyền Thông) / Internet Protocol (Giao thức Internet).
-TCP/IP không chỉ gồm 2 giao thức mà thực tế nó là tập hợp của nhiều giao thức. Chúng ta gọi đó là 1 Hệ Giao Thức hay Bộ Giao Thức (Suite Of Protocols). Bài viết chúng ta sẽ tập trung vào Bộ Giao Thức này.


II Tổng quát:
-Để cho các máy tính trao đổi dữ liệu với nhau TCP/IP sử dụng mô hình truyền thông 4 tầng hay còn gọi là Mô Hình DoD (Mô hình của Bộ Quốc Phòng Mỹ). Các tầng trong mô hình này là (Theo thứ tự từ trên xuống):
+ Tầng Ứng Dụng (Application Layer)
+ Tầng Giao Vận (Transport Layer)
+ Tầng Liên Mạng (Internet Layer)
+ Tầng Giao Diện Mạng (Network Interface Layer)
- Mỗi giao thức của Họ TCP/IP đều thuộc 1 trong các tầng này. Ta sẽ cùng tìm hiểu từng tầng .

1.Tầng Giao Diện Mạng (Network Interface Layer):


-Tầng Giao Diện Mạng có trách nhiệm đưa dữ liệu tới và nhận dữ liệu từ phương tiện truyền dẫn. Tầng này gồm các thiết bị phần cứng vật lí chẳng hạn như Card Mạng và Cáp Mạng.
- 1 Card Mạng chẳng hạn card Ethernet chứa 1 số HEX 12 kí tự (00-18-37-03-C0-F4) được gọi là Địa Chỉ MAC (Media Access Control) hay Địa Chỉ Truy Nhập Phương Tiện . MAC đóng vai trò quan trọng trong việc gán địa chỉ và truyền dữ liệu.
- 1 số giao thức tiêu biểu thuộc tầng này gồm :
+ ATM (Asynchronous Transfer Mode)
+ Ethernet
+ Token Ring
+ FDDI (Fiber Distributed Data Interface)
+ Frame Relay

2.Tầng Liên Mạng (Internet Layer):
- Nằm bên trên tầng giao diện mạng. Tầng này có chức năng gán địa chỉ, đóng gói và định tuyến (Route) dữ liệu. 4 giao thức quan trọng nhất trong tầng này gồm:
+ IP (Internet Protocol): Có chức năng gán địa chỉ cho dữ liệu trước khi truyền và định tuyến chúng tới đích.
+ ARP (Address Resolution Protocol): Có chức năng biên dịch địa chỉ IP của máy đích thành địa chỉ MAC.
+ ICMP (Internet Control Message Protocol): Có chức năng thông báo lỗi trong trường hợp truyền dữ liệu bị hỏng.
+ IGMP (Internet Group Management Protocol): Có chức năng điều khiển truyền đa hướng (Multicast)

3.Tầng Giao Vận (Transport Layer):
- Có trách nhiệm thiết lập phiên truyền thông giữa các máy tính và quy định cách truyền dữ liệu. 2 giao thức chính trong tầng này gồm:
+ UDP (User Datagram Protocol): Còn gọi là Giao Thức Gói Người Dùng. UDP cung cấp các kênh truyền thông phi kết nối nên nó không đảm bảo truyền dữ liệu 1 cách tin cậy. Các ứng dụng dùng UDP thường chỉ truyền những gói có kích thước nhỏ, độ tin cậy dữ liệu phụ thuộc vào từng ứng dụng
+ TCP (Transmission Control Protocol): Ngược lại với UDP, TCP cung cấp các kênh truyền thông hướng kết nối và đảm bảo truyền dữ liệu 1 cách tin cậy. TCP thường truyền các gói tin có kích thước lớn và yêu cầu phía nhận xác nhận về các gói tin đã nhận.

4.Tầng Ứng Dụng (Application Layer):


- Gồm nhiều giao thức cung cấp cho các ứng dụng người dùng. Được sử dụng để định dạng và trao đổi thông tin người dùng. 1 số giao thức thông dụng trong tầng này là:
+ DHCP (Dynamic Host Configuration Protocol): Giao Thức Cấu Hình Trạm Động
+ DNS (Domain Name System): Hệ Thống Tên Miền
+ SNMP (Simple Network Management Protocol): Giao Thức Quản Lý Mạng Đơn Giản
+ FTP (File Transfer Protocol): Giao Thức Truyền Tập Tin
+ TFTP (Trivial File Transfer Protocol): Giao Thức Truyền Tập Tin Bình Thường
+ SMTP (Simple Mail Transfer Protocol): Giao Thức Truyền Thư Đơn Giản
+ TELNET

***Bảng sau mô tả khái quát về Bộ Giao Thức TCP/IP:





PHẦN 2 : ĐỊA CHỈ IP

I Địa chỉ IP:
- Mỗi máy trên mạng TCP/IP hay còn gọi là trạm TCP/IP được nhận dạng bằng 1 địa chỉ IP logic. Mỗi trạm hay mỗi thiết bị mạng sử dụng TCP/IP để truyền thông cần có 1 địa chỉ IP duy nhất.
- Địa chỉ IP cho biết vị trí của 1 hệ thống trong 1 mạng giống như địa chỉ xác định ngôi nhà trên 1 con đường nào đó. Tương tự như 1 khu dân cư. Địa chỉ IP phải là duy nhất trên toàn cầu và phải được viết dưới 1 định dạng chuẩn.
- Mỗi địa chỉ IP được chia thành 2 phần : Phần địa chỉ mạng (Net ID) và Phần địa chỉ trạm (Host ID).
+ Net ID: Dùng để nhận dạng những hệ thống trong cùng 1 khu vực vật lý còn được gọi là Phân Đoạn (Segment). Mọi hệ thống trong cùng 1 Phân Đoạn phải có cùng Địa Chỉ Mạng và Phần địa chỉ này phải là duy nhất trong số các mạng hiện có.
+ Host ID: Dùng để nhận dạng 1 trạm làm việc, 1 máy chủ, 1 Router hoặc 1 trạm TCP/IP trong 1 phân đoạn. Phần địa chỉ trạm cũng phải là duy nhất trong 1 mạng
- Giống địa chỉ bưu điện gồm 2 phần: MÃ BƯU ĐIỆN – SỐ NHÀ,TÊN ĐƯỜNG. Địa chỉ IP cũng gồm 2 phần: NET ID – HOST ID.
+ Phần đầu tiên, NET ID nhận dạng mạng mà máy tính nối tới, tất cả máy tính trong cùng mạng phải có cùng NET ID giống như mọi nhà trong cùng quận phải có cùng MÃ BƯU ĐIỆN.
+ Phần thứ hai, HOST ID xác định máy tính, router hoặc thiết bị mạng khác trong mạng. HOST ID phải là duy nhất trong 1 mạng giống như SỐ NHÀ,TÊN ĐƯỜNG phải là duy nhất trong 1 quận. Hai máy tính có thể có cùng HOST ID nếu NET ID của chúng khác nhau, giống như hai ĐƯỜNG có thể cùng tên nếu như chúng thuộc 2 quận khác nhau.
- Sự kết hợp giữa NET ID và HOST ID phải cho phép nhận dạng duy nhất mỗi máy tính riêng biệt.
- Các địa chỉ IP có chiều dài 32bit được chia thành 4 dãy. Mỗi dãy gồm 8bit (1Byte), mỗi Byte được phân cách = 1 dấu “.”, 1 Byte là 1 giá trị nằm trong khoảng từ 0-255. Cách biểu diễn như vậy gọi là “Kí hiệu thập phân dấu chấm” (Dotted-Decimal Notation) để cho mọi người sử dụng nhớ địa chỉ 1 cách dễ dàng.




- Tuy nhiên khi xử lý thông tin máy tính lại sử dụng Hệ Nhị Phân (Binary) vì tín hiệu chúng sử dụng để truyền thông chỉ có 2 trạng thái là Bật (1) và Tắt (0)

***Bảng bên dưới đây sẽ mô tả sự kết hợp giữa Kí Hiệu Thập Phân (Decimal Notation) và Kí Hiệu Khoa Học (Scientific Notation) với mỗi Bit bên trong 1 Bộ Tám Nhị Phân (Binary Octet).



Trong 1 Byte , mỗi bit được gán một giá trị. Nếu Bit được đặt là 0 thì nó được gán giá trị 0, nếu Bit được đặt là 1 thì có thể chuyển đổi thành 1 giá trị thập phân. Bit thấp nhất trong Byte tương ứng với 1, Bit cao nhất tương ứng với 128. Vậy giá trị lớn nhất của 1 Byte là 255 tương ứng với trường hợp cả 8 Bit đều được đặt là 1.



Ví dụ: Ta sẽ đổi địa chỉ sau: 10101100 00010000 00000101 01111101 sang dạng Kí Hiệu Thập Phân Dấu Chấm.



II Địa chỉ IP Public và Địa chỉ IP Private:
1.IP Public:
- Mỗi 1 địa chỉ IP ngoài Internet là duy nhất. Để các Network có những địa chỉ duy nhất ngoài Internet, thì Internet Assigned Numbers Authority (IANA) sẽ chia những khoảng địa chỉ không dự trữ thành những phần nhỏ và ủy thác trách nhiệm phân phối địa chỉ cho các tổ chức Đăng Kí Miền khắp thế giới. Những tổ chức đó là Asia-Pacific Network Information Center (APNIC), American Registry for Internet Numbers (ARIN), and Réseaux IP Européens (RIPE NCC). Những tổ chức này sẽ phân phối những khối địa chỉ đến 1 số nhà các Internet Service Provider (ISP) lớn và các ISP lớn này sau đó sẽ gán những khối nhỏ hơn cho các đại lý và các ISP nhỏ hơn.
- ISP sẽ cấp 1 IP Public cho mỗi máy tính của bạn để các máy tính này có thể kết nối trực tiếp đến ISP. Các địa chỉ này được cấp 1 cách tự động dến mỗi máy tính khi máy tính kết nối và có thể là địa chỉ tĩnh nếu đường line của bạn thuê riêng hay các tài khoàn Dial-up

2.IP Private:
- IANA đã dự trữ một ít địa chỉ IP mà các địa chỉ này không bao giờ được sử dụng trên Internet. Những địa chỉ IP Private này được sử dụng cho những Host yêu cầu có IP để kết nối nhưng không cần được thấy trên các mạng Public. Ví dụ, 1 user kết nối những máy tính trong mạng TCP/IP ở nhà thì ko cần cấp 1 địa chỉ IP Public cho mỗi Host. User có thể lấy những khoảng IP ở bảng dưới đây để cung cấp địa chỉ cho các Host trong mạng.



- Những host có địa chỉ IP Private có thể kết nối đến Internet bằng cách sử dụng 1 Proxy Server hay 1 máy tính chạy Windows Server 2003 đã cấu hình như là 1 Network Address Translation (NAT) Server. Windows Server 2003 cũng tích hợp chức năng Internet Connection Sharing (ICS) để cung cấp dịch vụ NAT đơn giản cho các Client trong mạng Private.

III Lớp địa chỉ:
- Có 5 lớp địa chỉ IP để tạo các mạng có kích thước khác nhau gồm: Lớp A, Lớp B, Lớp C, Lớp D, Lớp E.
- TCP/IP hỗ trợ gán địa chỉ lớp A, lớp B, lớp C cho các trạm.
- Các lớp này có chiều dài phần NET ID và HOST ID khác nhau nên số lượng Mạng và số lượng Trạm trên mỗi mạng cũng khác nhau:
+ Lớp A: Được gán cho các Mạng có kích thước cực lớn. Trong lớp địa chỉ này Byte đầu tiên xác định NET ID, Bit cao nhất của Byte này luôn được đặt là 0. 3 Byte còn lại xác định Host ID. Do đó lớp A có thể cấp cho 126 Mạng với 16.777.214 Trạm trên mỗi Mạng.
+ Lớp B: Được gán cho các Mạng có kích thước vừa và lớn. Trong lớp địa chỉ này 2 Byte đầu tiên xác định NET ID, 2 Bit cao nhất của Byte đầu tiên luôn được đặt là 1 0. 2 Byte còn lại xác định Host ID. Do đó lớp B có thể cấp cho 16.384 Mạng với 65.534 Trạm trên mỗi Mạng.
+ Lớp C: Được gán cho các Mạng có kích thước nhỏ. Trong lớp địa chỉ này 3 Byte đầu tiên xác định NET ID, 3 Bit cao nhất của Byte đầu tiên luôn được đặt là 1 1 0. Byte cuối cùng xác định Host ID. Do đó lớp C có thể cấp cho 2.097.152 Mạng với 254 Trạm trên mỗi Mạng.
+ Lớp D: Các địa chỉ lớp này sử dụng cho Truyền Đa Hướng (Multicast). 1 nhóm Multicast có thể chứa 1 hoặc nhiều Trạm. Trong lớp này 4 Bit cao nhất của Byte đầu tiên luôn được đặt là 1 1 1 0, các Bit còn lại định nghĩa nhóm Multicast. Địa chỉ lớp D không được chia thành Net ID và Host ID. Các gói(Packets) Multicast được truyền tới 1 nhóm Trạm cụ thể và chỉ có các Trạm đăng kí vào nhóm này mới nhận được gói.
+ Lớp E: Là lớp địa chỉ thực nghiệm, nó không được thiết kế cho mục đích sử dụng chung. Lớp E được dự phòng cho các ứng dụng tương lai. Các Bit cao nhất của Byte đầu tiên luôn được đặt là 1 1 1 1.
- Tổng số IP có thể sử dụng là : 3.720.314.628

*** Bảng sau đây sẽ mô tả khái quát về các lớp địa chỉ IP:





*** Bảng mô tả sự khác nhau giữa 3 Lớp địa chỉ A, B và C:







IV Subnet Mask:
- Để biết Trạm đích thuộc Mạng cục bộ hay ở xa. Trạm nguồn cần 1 thông tin khác. Thông tin này chính là Subnet Mask
- Subnet Mask là 1 địa chỉ 32 bit được sử dụng để che 1 phần của địa chỉ IP. Bằng cách này các máy tính có thể xác định đâu là Net ID và đâu là Host ID trong 1 địa chỉ IP.
- Mỗi Trạm trong mạng TCP/IP yêu cầu có 1 Subnet Mask.Nó được gọi là Subnet Mask mặc định, nếu nó chưa được chia Subnet (và vì vậy nó chỉ có 1 Subnet Đơn), và được gọi là Subnet Mask tùy ý nếu nó được chia thành nhiều Subnet
Vd: 1 số 32bit tiêu biểu cho 1 Subnet Mask mặc định được dùng bởi những Trạm đã cấu hình với 1 địa chỉ lớp C (vd 192.168.20.50) là :
11111111 11111111 11111111 00000000 (255.255.255.0). Khi 1 trạm có địa chỉ 192.168.20.50 gởi gói tin đến địa chỉ 192.168.50.20. Đầu tiên, Trạm sẽ thực hiện phép tính AND giữa Địa Chỉ cục bộ với Subnet Mask mặc định cục bộ. Bởi vì khi thực hiện phép tính AND 2 số, bất kì số nào AND với 0 sẽ là 0, và AND với 1 sẽ là chính nó => khi AND 192.168.20.50 với 255.255.255.0 kết quả là 192.168.20.0. Máy trạm sau đó sẽ thực hiện phép tính AND giữa Địa chỉ Đích với Subnet Mask giống trên. TCP/IP sau đó sẽ so sánh kết quả những giá trị từ 2 phép tính AND. Nếu 2 giá trị đồng nhất thì Trạm TCP/IP kết luận đích kia là trên Subnet cục bộ. Nếu 2 giá trị khác nhau thì Trạm xác định đích kia là ở xa.
- Ta cũng có 1 cách viết khác để xác định Subnet Mask là:
Địa chỉ IP / Tiền tố Mạng
Tiền tố Mạng được xác định bằng cách cộng tất cả các bit 1 trong dãy 32bit của Subnet Mask.
Vd: 192.168.5.10 có Subnet Mask mặc định là 255.255.255.0.
Đổi qua số nhị phân sẽ là 11111111 11111111 11111111 00000000.
=> Tổng cộng có 24 bit 1. Vậy ta có thể viết dưới dạng:
192.168.5.10 / 24

*** Bảng dưới đây sẽ đưa ra những Subnet Mask mặc định cho các Lớp Mạng:


V Default Gateway:
- Khi 1 trạm trong TCP/IP cần truyền thông tin với 1 Trạm trên Mạng khác thì nó phải thông qua 1 Router. Router được gắn nhiều Interface (vd Card Mạng) kết nối đến các Mạng riêng biệt, Routing là quá trình nhận những gói IP tại 1 Interface và gởi những gói này ra 1 Interface khác hướng về 1 đích cuối cùng. Với 1 host được cấp trên Mạng TCP/IP thì Default Gateway là địa chỉ của Router, nằm trong 1 phạm vi Broadcast, nó được cấu hình để đưa những luồng IP đến Mạng khác.
- Khi 1 máy tính cố gắng truyền đạt thông tin đến 1 trạm khác trên Mạng IP, máy tính sẽ dùng SUBNET MASK để xác định Trạm đích là Cục Bộ (Local) hay ở Xa (Remote). Nếu đích là 1 trạm trên 1 phân đoạn Mạng Cục Bộ, máy tính sẽ đơn giản gởi 1 gói tin đến Mạng Cục Bộ bằng cách truyền cho tất cả (Broadcast). Nếu đích là 1 Trạm ở Xa, máy tính sẽ đưa gói tin đến Default Gateway đã được xác định trong TCP/IP Properties. Router được ghi rõ tại địa chỉ Default Gateway sau đó sẽ chịu trách nhiệm đưa gói tin đến Mạng 1 cách chính xác.

VI Chia Subnet:
- Những Subnet Mask được sử dụng bởi nhiều host để xác định đâu là phần chia của 1 địa chỉ IP được xem như là Net ID của địa chỉ đó.Lớp A, B và C sử dụng Subnet Mask mặc định được che lần lượt là 8, 16, 24bit tương đương với những địa chỉ 32bit. 1 Mạng cục bộ được định rõ bởi 1 Subnet Mask hay còn gọi là 1 Subnet
- Chia subnet là phương pháp logic chia 1 địa chỉ mạng bằng cách tăng bit 1 sử dụng trong Subnet Mask của 1 Mạng. Phần mở rộng này cho phép bạn chia nhiều Subnet bên trong Mạng ban đầu
+ 255.255.0.0 là Subnet Mask mặc định được sử dụng cho những host bên trong lớp B , ví dụ như 131.107.0.0, thì 2 địa chỉ 131.107.1.11 và 131.107.2.11 là giống Subnet. Và những host trong Net này liên lạc với nhau bằng cách gởi gói tin Broadcast. Nhưng khi Subnet Mask được tăng thêm thành 255.255.255.0 thì rõ ràng 2 địa chỉ 131.107.1.11 và 131.107.2.11 là khác Net. Thì những host này muốn liên lạc với nhau thì phải gởi 1 gói tin IP đến Default Gateway, cái mà nó chịu trách nhiệm routing những gói dữ liệu đến Subnet Đích
+ Trong khi ban đầu địa chỉ lớp B khi chưa chia Subnet có 65.534 host thì Subnet Mask mới được cấu hình như hình bên dưới cho phép bạn chia thành 256 Subnet với 254 host trên 1 subnet.




+ Ưu điểm của việc chia Subnet là khi chia xong những phân đoạn con có thể trải rộng trên nhiều phân đoạn vật lý (vd mạng có thể gồm 2 phân đoạn là Ethernet và Token Ring). Tuy nhiên ưu điểm chính là giảm lưu lượng mạng vì khi chia Subnet thì lưu lượng các gói tin Broadcast không làm ảnh hưởng đến toàn mạng do Router giữa các mạng sẽ chặn các gói tin Broadcast.

- Xác định Tổng số Host trên 1 Mạng bằng cách ta lấy 2 lũy thừa số bit làm Host ID sau đó trừ cho 2.
Vd: 192.168.1.0 thuộc lớp C nên mặc định sẽ có 24bit làm Net ID (192.168.1.0/24) và 8bit làm Host ID. Vậy Tổng số Host : 2 lũy thừa 8 –2 = 254 Host

- Xác định Tổng số Subnet bằng cách ta lấy 2 lũy thừa số bit mở rộng thêm vào Net ID
Vd : 172.16.0.0 . Thuộc lớp B nên có 16bit làm Net ID(172.16.0.0/16) và 16bit làm Host ID. Do Net ID chưa mở rộng bit nào nên số bit mở rộng = 0 , vậy Tổng số Subnet = 2 lũy thừa 0 = 1 Subnet
Vậy nếu 172.16.0.0 viết dưới dạng 172.16.0.0/20. Vậy có nghĩa số bit làm Host ID là 12 và số bit mở rộng thêm vào Net ID là 4.
=> Tổng Số Host : 2 lũy thừa 12 –2 = 4094 Hosts
=> Tổng Số Subnet : 2 lũy thừa 4 = 16 Subnets

- Xác định số Host trên mỗi Subnet: Tính tổng số Host trên 1 Subnet giống như tính tổng số Host trên 1 Mạng. Khi 1 địa chỉ Mạng đã được chia Subnet. Thì tổng số Host trên mỗi Subnet sẽ là 2 lũy thừa x -2 với x là số bit làm Host ID.

- Ước lượng phạm vi địa chỉ Subnet: Bằng cách sử dụng Kí Hiệu Thập Phân Dấu Chấm , ta có thể ước lượng được phạm vi của những địa chỉ IP trên mỗi Subnet đơn giản bằng cách ta lấy 256 trừ cho giá trị bộ 8 thích hợp trong Subnet Mask.

Vd1: 1 Net thuộc lớp C có địa chỉ 192.168.5.0 với Subnet Mask là 255.255.255.192. Ta lấy 256-192 = 64, Vậy kết quả mỗi phạm vị địa chỉ Subnet của Mạng được nhóm trong khoảng 64: 192.168.5.0 – 192.168.5.63, 192.168.5.64 – 192.167.5.127 , .v.v…
Vd2: 1 Net thuộc lớp B có địa chỉ 172.16.0.0 với Subnet Mask là 255.255.255.240. Ta lấy 256-240 = 16. Bởi vậy, mỗi phạm vi địa chỉ Subnet được nhóm 16 ở vị trí thứ 3 và thích hợp bộ 8. Nhưng trái lại vị trí thứ 4 của bộ 8 có phạm vi từ 0-255: 172.16.0.0 – 172.16.15.255, 172.16.16.0 – 172.16.31.255, …
- Lưu ý rằng có 2 địa chỉ không được dùng để cấp cho Host là địa chỉ mạng (tất cả các bit trong phần Host ID đều là 0) và địa chỉ Broadcast (tất cả các bit trong phần Host ID đều là 1)

VII Supernetting:
- Để ngăn sự cạn dần các Net ID của lớp A,B. Các nhà điều hành Internet đã sắp đặt 1 sơ đồ gọi là Supernetting. Supernetting sẽ cho phép nhiều Net gom thành 1 Net. Supernetting đưa ra nhiều thuận lợi hiệu quả cho việc đặt địa chỉ cho các Net.
- Ví dụ , giả sử 1 tổ chức cần cung cấp khoảng 2000 Trạm. Con số này là quá lớn đối với 1 lớp C (chỉ có thể cấp cho 254 trạm). Tuy nhiên 1 Net thuộc lớp B có thể cấp tới 16384 Net với 65534 Trạm trên mỗi Net và con số này cũng sẽ nhanh chóng giảm bớt. Bởi vậy nó ko thiết thực để 1 ISP (Internet Service Provider) cấp 1 Net lớp B vì nhu cầu tổ chức kia chỉ chiếm 3% trong tổng số IP của 1 Net trong lớp B , có nghĩa là lãng phí mất 63534 địa chỉ. Bằng cách sử dụng Supernetting, 1 ISP có thể cấp 1 khối những địa chỉ lớp C (1 Net có 254 Hosts) mà nó được xem như 1 Mạng độc lập ở đâu đó giữa lớp B và lớp C. Trong ví dụ này, 1 khối gồm 8 Net thuộc lớp C có thể đáp ứng nhu cầu tổ chức kia bằng cách cấp 2032 host.
- Supernetting khác với Chia Subnet ở chỗ là Supernetting mượn những Bit ở Net ID đem qua làm Host ID. Ví dụ, giả sử 1 ISP đã cấp cho bạn 1 khối gồm 8 Net lớp C từ 207.46.168.0 dến 207.46.175.0. Gán 1 Subnet Mask là /21 (mặc định là /24) đến các Router tại ISP và đến tất cả các host nằm trong tổ chức của bạn, kết quả là tất cả các máy đều thấy nhau như là 1 Net bởi vì nhờ vào Net ID bị rút ngắn phát sinh từ subnet mask là /24, phần Net ID của toàn bộ 8 địa chỉ này bây giờ được nhìn thấy như là duy nhất.

***Hình bên dưới sẽ minh họa cho phần này:



VIII CIDR (Classless Inter-Domain Routing – Định Tuyến Liên Vùng Không Phân Lớp):
- CIDR là 1 phương pháp hiệu quả để tính toán các supernet bên trong những bảng Định Tuyến. Nếu không dùng CIDR, những bảng Định Tuyến sẽ ghi vào 1 mục riêng để xử lý mạng nguyên bản trong supernet. CIDR cho phép toàn bộ supernet được xử lý chỉ bằng 1 mục duy nhất. Hình bên dưới sẽ cho ta thấy rõ điều này:



- Trái với phương pháp phân lớp. CIDR sử dụng Kí Hiệu Nhị Phân nghĩa là tất cả địa chỉ IP và Subnet Mask được chuyển đổi thành 0 và 1 tạo nên 32 giá trị thay vì 4 giá trị như ban đầu (vd 172.16.2.2->10101100 00010000 00000100 00000010). Cấu trúc này cho kích thước mạng linh hoạt hơn và tối ưu việc gán địa chỉ IP
VD: 10.217.123.7 chuyển sang nhị phân ta được 00001010 11011001 01111011 00000111. Làm tương tự với Subnet Mask chẳng hạn là 255.255.240.0 ta được 11111111 11111111 11110000 00000000. Sau đó ta sẽ AND 2 giá trị thập phân vừa chuyển để tính phần Net ID. Vậy ta được 00001010 11011001 01110000 00000000. Sau đó chuyển sang hệ Thập Phân ta được 10.217.112.0. Ta cộng tất cả các bit1 lại , cuối cùng ta được 10.217.112.0/20
- Phương pháp CIDR luôn cần cả địa chỉ IP và Subnet Mask để xác định được 1 địa chỉ bất kì cùng Net hay khác Net.

IX Variable-Length Subnet Masks (Subnet Mask có chiều dài thay đổi):
- Theo cách truyền thống thì 1 Subnet Mask đơn được chia sẻ qua mỗi host và router trong 1 tổ chức. Khi 1 Subnet Mask đơn được sử dụng khắp toàn bộ mạng, mạng có thể bị hỏng bên trong những subnet, vì những subnet này có cùng số host bởi vì nó dùng Subnet Mask giống nhau. Điều này là ko hiệu quả.
- Tuy nhiên, với Variable-Length Subnet Masks (VLSMs) thì các router trong 1 tổ chức có thể quản lý những Subnet Mask khác nhau. Thông thường nhất, VLSMs được dùng để cho phép tự các subnets chia thành subnet nhỏ hơn, hay nói cách khác, VLSMs còn được gọi là “Chia subnet trong 1 subnet lớn hơn” để tận dụng tối đa địa chỉ .

***Để hiểu rõ vấn đề này, ta sẽ làm 1 ví dụ:
Giả sử 1 công ty có 3 văn phòng A(50 host), B(27 host), C(12 host) và D(12 host) như hình bên dưới. Làm thế nào để tận dụng tối đa không gian địa chỉ







Theo đề bài thì 1 địa chỉ mạng lớp C – 192.168.100.0/24 phù hợp được cấp. Ta sẽ tiến hành mở rộng Net ID bằng cách lấy số bit Host ID đưa qua Net ID.
Các bước làm như sau:
B1: Xác định bao nhiêu bit Host ID sẽ cần để đáp ứng Net lớn nhất
B2: Lấy 1 subnet để cấp cho Net lớn nhất
B3: Chọn Net lớn kế tiếp để làm việc
B4: Chọn Net lớn thứ 3 để làm việc

Ta bắt đầu tiến hành làm B1 :
+ Ta nhận thấy văn phòng A là Net lớn nhất với 50 host. Do đó, bạn cần biết bao nhiêu bit Host ID sẽ cần:
Nếu 2 lũy thừa H –2 = Số host hợp lệ trên mỗi subnet
Sau đó, 2 lũy thừa H –2 >= 50
Do đó H = 6 (6 là giá trị nhỏ nhất hợp lệ)
+ Bạn cần 6 bit làm Host để đáp ứng yêu cầu của văn phòng A
+ Nếu bạn cần 6 bit Host và bạn đã bắt đầu với 8 bit Net, thì 8-6 = 2 bit Net để tạo ra các subnet:
Bắt đầu với: NNNNNNNN (đây là 8 bit trong bộ 8 thứ 4)
Và bây giờ : NNHHHHHH
Ta tiến hành B2:
+ Ta có 2 bit Net để làm việc vậy ta được 2 lũy thừa 2 = 4 Subnets :
NN = 00HHHHHH (6 bit H bạn cần cho văn phòng A)
01HHHHHH
10HHHHHH
11HHHHHH
+ Nếu bạn cộng tất cả các số 0 vào bit H bạn sẽ được số Mạng cho 4 subnet:
00000000 = .0
01000000 = .64
10000000 = .128
11000000 = .192
+ Đây là tất cả các subnet mà bạn có giống Subnet Mask
+ 2 bit lấy từ Host ID sang Net ID. Vậy Subnet Mask là:
11111111 11111111 11111111 11000000
hay 255.255.255.192
hay /26
+ Lấy 1 subnet cho văn phòng A . Ta còn lại 3 Subnet:



Ta tiến hành B3: Chọn Net lớn kế tiếp để làm việc
+ Ta thấy văn phòng B phù hợp yêu cầu với 27 host
+ Xác định số bit Host ID cần cho Net này:
2 lũy thừa H –2 >= 27
H = 5
+ Bạn cần 5 bit Host để đáp ứng yêu cầu văn phòng B
+ Bạn đã bắt đầu với mô hình 2 bit Net và 6 bit Host cho Văn Phòng A.
+ Bạn lấy 1 trong các Net /26 còn lại để chia cho Văn Phòng B
+ Với mục đích của đề bài, ta chọn mạng .128/26:
10000000
+ Nhưng bạn cần 5 bit , không phải 6 bit. Do đó bạn cần thêm 1 bit N bên trái:
10N00000
Khi đó
* 10 đại diện để mô ta cho phần nguyên thủy của chia Subnet
* N đại diện cho bit mở rộng
* 00000 đại diện cho 5 bit Host bạn cần cho văn phòng B
+ Bởi vì bạn có bit mở rộng này, bạn phải tạo ra 2 subnet nhỏ hơn từ subnet nguyên thủy:
10000000
10100000

+ Chuyển qua hệ thập phân, những subnet này là:
10000000 = .128
10100000 = .160

Bạn đã có subnet được chia trong subnet. Đây là dạng cơ bản của VLSMs
Mỗi subnet được chia trong subnet sẽ có 1 Subnet Mask mới. Nguyên thủy ban đầu Subnet Mask là /24 đã được thay đổi thành /24 bên trong Net A. Sau đó bạn lấy 1 trong những mạng Subnet /26 và tách nó ra thành 2 mạng subnet /27:
10000000 và 10000000 với 3 bit Net và 5 bit Host
Và Mask bây giờ sẽ bằng:
11111111.11111111.11111111.11100000
Hay 255.255.255.224
Hay /27

Lấy 1 trong những subnet được chia trong subnet cho văn phòng B:
10000000/27 = Network B

Sử dụng 1 subnet được chia trong subnet còn lại sử dụng về sau hay bạn có thể chia nhỏ ra tiếp nếu bạn cần.

Bạn muốn bảo đảm những địa chỉ sẽ không bị trùng lắp. Bạn trở lại với Bảng nguyên thủy ở trên:



Bây giờ bạn có thể chia mạng .128/26 thành 2 mạng /27 nhỏ hơn và cấp cho văn phòng B



Những mạng còn lại thì vẫn có sẵn để cấp cho những mạng hay subnet thêm nữa để kết quả tốt hơn.


Ta tiến hành B4: Chọn Net lớn thứ 3 để làm việc
+ Văn phòng C và D mỗi văn phòng 12 host
+ Xác định bit Host cần cho các mạng này:
2 lũy thừa H –2 >= 12
H = 4
+ Bạn cần 4 bit để đáp ứng yêu cầu của Văn Phòng C và D
+ Bạn đã bắt đầu với mô hình 2 bit Net và 6 bit Host cho Văn Phòng A
+ Bây giờ bạn phải lựa chọn để lấy Mạng nào. Bạn có thể lấy 1 mạng /26 khác hoặc cũng có thể lấy 1 mạng /27 và thử xem nó có vừa với yêu cầu ko.

+ Với mục đích của Đề Bài, ta chọn 1 mạng /27 – .160/27:
10100000 (bit 1 ở vị trí thứ 3 không còn được tô đậm như ở trên vì bây giờ nó là phần của bit Net)
+ Nhưng bạn chỉ cần 4 bit Host, không phải 5. Do đó bạn cần thêm 1 bit N bên trái:
101N0000
Khi đó
* 101 đại diện để mô ta cho phần nguyên thủy của Subnet
* N đại diện cho bit mở rộng
* 0000 đại diện cho 4 bit Host bạn cần cho văn phòng C, D
+ Bởi vì bạn có bit mở rộng này, bạn phải tạo ra 2 subnet nhỏ hơn từ subnet nguyên thủy:
10100000
10110000
+ Chuyển qua hệ thập phân, những subnet này là:
10100000 = .160
10110000 = .176

Mỗi subnet được chia trong subnet sẽ có 1 Subnet Mask mới. Mỗi subnet được chia trong subnet bây giờ đã có 4 bit Net và 4 bit Host và Mask mới của chúng là:
11111111.11111111.11111111.11110000
hay 255.255.255.240
hay /28

Lấy 1 trong những subnet được chia trong subnet mới tạo ra cho văn phòng C và D



Như vậy ta đã hoàn thành xong yêu cầu đề bài. Bạn đã thấy sức mạnh của VLSMs rồi chứ



Theo nhatnghe.com

Tìm hiểu về Mô hình mạng OSI


I.Mô hình OSI
Cùng với sự phát triển rực rỡ của công nghệ vi mạch tích hợp là động lực không nhỏ vào sự phát triển của các hệ thống mạng máy tính. Nhưng có một bất cập là mỗi hệ thống lại sử dụng những chuẩn phần cứng và phần mềm riêng của mình. Những điều đó khiến cho việc kết nối giữa những hệ thống này với nhau gặp rất nhiều khó khăn. Trước tình hình đó tổ chức tiêu chuẩn quốc tế ISO đã đề xuất ra một mô hình mà các nhà thiết kế mạng có thể dựa vào đó để thiết lập các hệ thống có khả năng tương thích với nhau, đó chính là mô hình tham chiếu OSI.
Mô hình tham chiếu hệ thống mở OSI (Open System Interconnection Reference Mode) là mô hình kiến trúc gồm 7 lớp, mỗi lớp đều có chức năng mạng xác định như: gán địa chỉ, điều khiển luồng, điều khiển lỗi, đóng gói và truyền gói tin một cách tin cậy trên mạng.
Các nguyên lý được áp dụng cho 7 tầng như sau:
(1) Mỗi lớp cần thiết phi tạo ở mức độ khác nhau của khái niệm trừu tượng.
(2) Mỗi lớp phi thực hiện một chức năng xác định rõ ràng.
(3) chức năng của mỗi lớp phi được chọn theo quan điểm hướng tới các giao thức chuẩn quốc tế được định nghĩa.
(4) Ranh giới giữa các lớp phi được chọn để tối thiểu luồng thông tin đi qua các giao diện

Một số ưu điểm của việc sử dụng mô hình phân lớp đó là:
• Tách hoạt động thông tin trên mạng thành những phần nhỏ hơn, đơn giản hơn.
• Nó chuẩn hóa các thành phần mạng để cho phép phát triển một mạng từ nhiều nhà cung cấp sản phẩm.
• Cho phép các loại phần cứng phần mềm khác nhau thông tin được với nhau.
• Cho phép người thiết kế chuyên môn hoá và phát triển chức năng theo kiểu modul.
• Nó giúp cho việc học tập về mạng được dễ dàng hơn.

Trong mô hình OSI, bốn lớp dưới định nghĩa cách để các trạm thiết lập kết nối để trao đổi với nhau dữ liệu. Còn 3 lớp trên định nghĩa các ứng dụng trong phạm vi đầu cuối sẽ giao tiếp với nhau và với user như thế nào.
I.1. Lớp vật lý
Lớp vật lý cung cấp các phương tiện điện, các thủ tục để kích hoạt, duy trì và giải phóng liên kết vật lý giữa các hệ thống.
Thuộc tính điện liên quan đến sự biểu diễn các bit (mức tín hiệu điện thế) và tốc độ truyền bit.
Thuộc tính liên quan đến các chuẩn về giao diện vật lý kích thước, cấu hình.
Thuộc tính thủ tục liên quan đến giao thức điều khiển việc truyền các chuỗi bit qua đường vật lý.
Lớp vật lý là dưới cùng trong mô hình OSI giao diện với đường truyền không có PDU (Protocol Data Unit), không có phần header chứa thông tin điều khiển (PCI Protocol Control Information), dữ liệu được truyền theo dòng bit.
I.2. Lớp liên kết dữ liệu (Data Link Layer)
Lớp liên kết dữ liệu cung cấp các phương tiện để truyền thông tin qua lớp vật lý đm bo độ tin cậy thông qua các cơ chế đồng bộ, kiểm soát lỗi và kiểm soát luồng dữ liệu.
Ngoài ra, lớp liên kết dữ liệu còn được chia làm 2 lớp con là:
+MAC (Media Access Control).
+LLC (Logical Link Control).
Các chức năng của lớp 2 gồm: tạo khung dữ liệu để truyền trên các đường vật lý, truy nhập các phương tiện vật lý nhờ các địa chỉ MAC, phát hiện lỗi nhưng không sửa được lỗi.
I.3. Lớp mạng (Network Layer)
Lớp mạng được các nhà chuyên gia đánh giá lớp phức tạp nhất trong tất các lớp trong mô hình OSI. Lớp mạng cung cấp phương tiện để truyền các đơn vị dữ liệu qua mạng hay liên mạng. Bởi vậy, nó phi đáp ứng nhiều kiểu cấu hình mạng và nhiều dich vụ cung cấp bởi các mạng khác nhau. Các dịch vụ và giao thức cho lớp mạng phi phản ánh được tính phức tạp đó. Hai chức năng chủ yếu của lớp mạng đó là:
+Định tuyến (Routing).
+Chuyển tiếp (Relaying).
Mỗi node trong mạng đều phi thực hiện các chức năng này, do đó, chúng phi ở trên lớp liên kết dữ liệu để cung cấp một dịch vụ “trong suốt” đối với lớp giao vận.
Công nghệ IP là một công nghệ tiêu biểu và ưu việt nhất của lớp mạng cho nên, hiện tại và tưng lai các công nghệ ở các lớp khác đều phi tiến tới ci tiến để tối ưu trong sự liên lạc với IP.
I.4. Lớp giao vận (Transport Layer)

Trong mô hình OSI, 4 lớp thấp quan tâm đến việc truyền dữ liệu qua hệ thống đầu cuối (end systems) qua các phưng tiện truyền thông còn 3 lớp cao tập trung đáp ứng các yêu cầu và các ứng dụng của người sử dụng. Lớp giao vận là lớp cao nhất của 4 lớp thấp, nhiệm vụ của nó la cung cấp dịch vụ truyền dữ liệu sao cho các chi tiết cụ thể của các phương tiện truyền thông được sử dụng ở dên dưới trở nên “trong suốt” đối với các lớp cao. Do đó nhiệm vụ của lớp giao vận rất phức tạp. Nó phi được tính đến kh năng thích ứng với một phạm vi rất rộng các đặc trưng mạng. Chẳng hạn, một mạng có thể là “connection-oriented” hay “connectionless”, có thể là đáng tin cậy (reliable) hay không đáng tin cậy (unreliale). Nó phi biết được yêu cầu về chất lượng dịch vụ của người sử dụng đồng thời, cũng phi biết được khả năng cung cấp dịch vụ của mạng bên dưới.
I.5. Lớp phiên (Session Layer)
Nhiệm vụ của lớp phiên là cung cấp cho người sử dụng các chức năng cần thiết để quản trị các “phiên” ứng dụng của họ, cụ thể như sau:
Điều phối việc trao đổi dữ liệu giữa giữa các ứng dụng bằng cách thiếp lập và giải phóng (một cách logic) các phiên (hay còn gọi là các hội thoại-dialogues).
Cung cấp các điểm đồng bộ hoá để kiểm soát việc trao đổi dữ liệu.
Áp đặt các quy tắc cho các tưng tác giữa các ứng dụng của người sử dụng.
Cung cấp cơ chế nắm quyền trong quá trình trao đổi dữ liệu.
Việc trao đổi dữ liệu có thể được thực hiện theo 1 trong 3 phương thức:
Đơn công
Bán song công
Song công
Tóm lại, nhiệm vụ của lớp phiên là thiết lập, quản lý và kết thúc các phiên giao tiếp giữa các thực thể lớp trình bày.
I.6. Lớp trình diễn (Presentation Layer)

Mục đích của lớp trình diễn là đm bo cho các hệ thống đầu cuối có thể truyền thông có kết quả ngay có khi chúng sử dụng các cách biểu diễn dữ liệu khác nhau.

I.7. Lớp ứng dụng (Application Layer)

Lớp ứng dụng là lớp gần gũi với người dùng hầu hết, nó cung cấp các dịch vụ mạng cho các ứng dụng của người dùng.

Là lớp cao nhất trong mô hình OSI, cho nên lớp ứng dụng có một số đặc điểm khác với các lớp dưới nó.Trước hết, nó không cung cấp một dịch vụ cho một lớp trên nào như các lớp bên dưới. Do đó ở lớp không có khái niệm điểm truy nhập lớp dịch vụ. Lớp ứng dụng là ranh giới giữa môi trường nối kết các hệ thống mở và các tiến trình ứng dụng (Application Process). Các tiến trình ứng dụng thuộc các hệ thống mở khác nhau muốn trao đổi thông tin phi thông qua tầng ứng dụng thuộc các hệ thống mở khác nhau

Tìm hiểu về VoIP

Ngày nay hầu như các bạn nghe nói rất nhiều cũng như đã và đang sử dụng các dịch vụ Voice over IP (VoIP) trong liên lạc hằng ngày (Skype, Voice chat...). VoIP là một kỹ thuật mang tính cách mạng làm thay đổi thể giới điện thoại, và trong tương lai rất có thể sẽ thay thế toàn bộ hệ thống điện thoại truyền thống. Thực tế chúng hoạt động như thế nào, lợi ích của chúng ra sao? Đâu là những tiện ích và ứng dụng của VoIP? Nếu các bạn quan tâm thì chúng ta cùng nhau tìm hiểu. 

(source fcc)


Hình trên miêu tả 2 mạng: mạng điện thoại truyền thống PSTN (thoại) và mạng Internet (data) tách biệt nhau ra. Mạng điện thoại kết nối nhiều PBX (Private Branch Exchange) lại với nhau, và mỗi một PBX sẽ được nối kết với nhiều máy điện thoại. Trong mạng dự liệu, nhiều mạng cục bộ LAN nối kết lại với nhau thông qua mạng Internet (chia sẻ dự liệu, email, web,...). 

Tại sao lại cần 2 mạng độc lập như thế? Tại sao không nối kết liên mạng chúng lại với nhau? Và khi đó, chúng ta sẽ có 1 mang duy nhất như sau: 


Khi đó voice và data sẽ được truyền tải trên IP qua cùng 1 mạng.

Có vẻ trước tiên chúng ta nên tìm hiểu về lợi ích của VoIP trước khi đi sâu vào tìm hiểu nguyên tắc hoạt động của VoIP. 

- Một trong những tiên ích đáng kể nhất là giá thấp. Vì điện thoại IP truyền qua tài nguyên internet nên giá thành rất rẻ so với điện thoại PSTN. Đối với các công ty, việc chuyển sang dùng VoIP là một giải pháp giúp giảm thiểu cước phí điện thoại, nhất là điện thoại quốc tế, điện thoại đường dài. Hiện tại trong các công ty đều tồn tại 2 mạng, mạng điện thoại và mạng máy tính (intranet+internet). Việc quản lý 2 mạng này độc lập cũng dẫn đến nhiều tốn kém. Nếu chuyển sang dùng giải pháp VoIP thì công ty sẽ giảm chí phí cho việc quản lý bảo trì hệ thống mạng thoại và data. Dĩ nhiên các công ty phải chấp nhận một chi phí ban đầu để mua các telephone IP, nhưng chi phí về lâu dài sẽ mang đến lợi ích đáng kể. 

VoIP sử dụng kỹ thuật chuyển mạch gói (packet-switching - PS) của Internet để truyền tải dịch vụ thoại thay vì kỹ thuật chuyển mạch (circuit-switching - CS) như trong mạng điện thoại truyền thống (PSTN -Public switched telephone network). Vì VoIP sử dụng PS nên nó có nhiều tiện ích mà PS mang lại so với CS. Cụ thể, PS cho phép một vài cuộc thoại sử dụng một tài nguyên tương đương tài nguyên dành cho 1 cuộc thoại CS. Ví dụ một cuộc thoại 10 phút trên PSTN sử dụng hết liên tục 10 phút truyền thông tin (transmission) với băng thông 128Kbps. Nếu dùng VoIP để thực hiện cùng 1 cuộc thoại trên, thực tế bạn chỉ cần 3.5 phút truyền thông tin với băng thông 64Kbps. Như vậy bạn giải phóng 64Kbps trong 3.5 phút đấy cho người khác và cả 128Kbps cho 6.5 phút còn lại. Hình dưới đây minh họa sự khác nhau giữa PS và CS. 


Để thực hiện được sự hội tụ trên chúng ta cần các thiết bị mới hoặc có thể thích ứng các thiết bị hiện có (thông qua các adapter), và chúng ta có một mạng như sau: 




Vấn đề khiến VoIP vẫn chưa được triển khai nhiều trong các công ty là gì? Có 2 vấn đề nỗi lên đó là chi phí điện thoại IP còn khá cao và thứ hai là vấn đề bảo mật của VoIP

Chính vì VoIP dựa trên kết nối Internet nên nó có thể có những điểm yếu đối với bất kỳ mối đe dọa và các vấn đề gì mà máy tính của bạn phải đối mặt. VoIP có thể bị tấn công bởi virus và mã nguy hiểm khác. Các kẻ tấn công có thể chặn việc truyền thông, nghe trộm và thực hiện các tấn công giả mạo bằng việc thao túng ID và làm hỏng dịch vụ của bạn. 

Các hoạt động tiêu tốn lượng lớn tài nguyên mạng như tải file, chơi chò trơi trực tuyến…cũng ảnh hưởng đến dịch vụ VoIP. Ngoài những vấn đề trên ra, VoIP còn kế thừa những vấn đề chính trong việc định tuyến trên kết nối băng thông rộng. Không giống như các hệ thống điện thoại truyền thống bạn có thể gọi cả khi mất điện Trong hệ thống VoIP, nếu mất nguồn điện thì VoIP cũng không thể thực hiện được cuộc gọi. Ở đây cũng có vài vấn đề liên quan đó là các hệ thống bảo mật tại nhà hoặc số khẩn cấp có thể không làm việc theo như mong muốn....



Ở trên hình cuối cùng ở trên, chúng ta có thể thấy là có một gatekeeper ở trong mạng LAN. Gatekeeper thực chất chỉ dùng trong trường hợp mạng VoIP dùng giao thức signalling H323. Còn nếu dùng SIP thì sẽ không có gatekeeper này, mà thay vào đó là SIPproxy, SIP registrar. 

Trong công ty muốn dùng VoIP cục bộ, thì họ cần phải có một IP PBX như hình dưới đây 

(nguồn 3cx)

Máy chủ IP PBX là tương tự như một máy chủ proxy (SIP proxy): các máy khách SIP, có thể là điện thoại dạng phần mềm hay phần cứng, đăng ký với máy chủ IP PBX và khi chúng muốn thực hiện cuộc gọi, chúng yêu cầu máy IP PBX thiết lập kết nối. Máy IP PBX có một danh mục tất cả mọi điện thoại/người dùng và địa chỉ SIP tương ứng của họ và do vậy có khả năng kết nối cuộc gọi trong mạng hay dẫn hướng cuộc gọi từ bên ngoài thông qua máy VOIP gateway hay một nhà cung cấp dịch vụ VOIP.

VOIP gateway là thiết bị chuyển đổi tín hiệu điện thoại sang dạng IP để truyền trên mạng dữ liệu. Chúng được dùng:

- Để chuyển đổi các cuộc gọi trên đường dây PSTN/điện thoại sang VOIP/SIP. Theo cách này, VOIP gateway cho phép gọi và nhận cuộc gọi trên mạng điện thoại thông thường. Trong nhiều trường hợp trong thương mại, người ta thích tiếp tục sử dụng đường điện thoại truyền thống hơn vì họ có thể đảm bảo chất lượng cuộc gọi và sự sẵn có hơn.

- Để kết nối một hệ thống PBX/Điện thoại truyền thống với mạng IP. Theo cách này, VOIP gateway cho phép gọi qua VOIP. Các cuộc gọi có thể được thực hiện thông qua máy cung cấp dịch vụ VOIP, hoặc trong trường hợp các công ty có nhiều văn phòng, chi phí gọi giữa các văn phòng với nhau có thể được giảm bằng cách chuyển đường các cuộc gọi ra Internet. Hầu hết các thiết bị VOIP gateway là ở dạng thiết bị ngoài. VOIP gateway có một đầu nối mạng IP và một hoặc nhiều cổng để nối dây điện thoại.
 
Support : Creating Website | Johny Template | Mas Template
Copyright © 2011. SHOP - All Rights Reserved
Template Created by Creating Website Published by Mas Template
Proudly powered by Blogger
Share template blogspot, share code